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1. INTRODUCTION

Accurate characterization of the space radiation environment
" is one of the important inputs into the design of space systems
that wutilize complex electronic components. Radiation dose
information can be used to optimize the design of a space system in
terms of its expected lifetime, the types of electronic parts that
can be wused, and the shielding required for its critical
components.

Electronic devices, photovoltaic power systems, and spacecraft
power systems are susceptible to damage due to the received
radiation dose from incident energetic protons and electrons. 1In
addition, many types of electronic parts, particularly
microprocessors and associated memory units, are subject to single-
event-upsets (SEU’s) caused by the passage of single high-energy
heavy ions through the device or high energy proton induced
"nuclear star" events. The instantaneous radiation dose rate and
the associated total accumulated dose provide important information
for the estimation of satellite lifetime and for real-time
decisions regarding satellite integrity. This information can be
used to provide advance warning of when critical components are
approaching failure due to radiation damage, and it can also
provide confidence in the reliable operation of a component by
showing that the radiation damage is not yet significant. In the
case of solar flares, a dose measurement could show that radiation
exposure has (perhaps suddenly) become very important and that the
consequences must be addressed.

The increasing use of complex solid-state electronic devices
in the space radiation environment makes it important to have
reliable data on the radiation doses these devices will receive
behind various thicknesses of shielding. As part of the effort to
obtain this data, a Dosimeter was designed, fabricated, calibrated,
and integrated into the payload of a Defense Meteorological
Satellite Program (DMSP) satellite by Panametrics, Inc., for the
Geophysics Laboratory. A second, essentially identical, Dosimeter
was designed, fabricated, calibrated, and integrated into the
payload of the Combined Release and Radiation Effects Satellite
(CRRES) by Panametrics, Inc., for the Geophysics Laboratory. The
DMSP and CRRES Dosimeters, which measure the accumulated radiation
dose in four silicon solid-state detectors behind four different
thicknesses of aluminum shielding (one solid-state detector behind
each shield), are described in Refs. 1 and 2, respectively.




The general objective of the current contract is the design
and fabrication of an improved, second-generation Dosimeter
intended to fulfill the need for accurate radiation dose
- measurements. This system is to  have the following
characteristics:

1) Separately measure the total accumulated dose due to
electrons and protons,

2) Detect and measure energy deposition of large-energy
deposition events (possible SEU'’s),

3) Accurately measure the dose during normal activity
periods and during large solar flare events (such as
August 1972 or March 1989),

4) Be easily adaptable mechanically and electronically to
different spacecraft and different radiation
environments (for example, orbits inside or outside the
radiation belts),

5) Have modest telemetry requirements.
The specific objectives of this contract are as follows:

1) Conceptual design of a Dosimeter instrument which meets
the five requirements listed above,

2) Detailed design of the Dosimeter instrument,

3) Fabrication, testing and delivery of the Protoflight?
Dosimeter unit,

4) Fabrication, testing and delivery of the Backup®' flight
Dosimeter unit.

5) Integration of the Protoflight® or Backup® Dosimeter into
the payload of the Advanced Photovoltaic and Electronic
Experiments (APEX) satellite, as part of the Photovoltaic
Array Space Power Plus Diagnostics (PASP Plus) experiment.

6) Integration and launch support of the APEX spacecraft.

'The "Protoflight" and "Backup" designations are specified in
the contract. The "Protoflight" Dosimeter and "Backup" Dosimeter
are both fully qualified flight instruments.
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2. DESIGN
2.1 Detection System

An isometric drawing of the Dosimeter is shown in Figure 1,
and the instrument’s block diagram is shown in Figure 2.

The integral particle flux and radiation dose is measured by
solid-state detectors located behind degraders and backed by a
large amount of shielding, which reduces the response to rear entry
particles. As shown in Figures 1 and 2, the instrument has four
degraders (3 hemispherical and 1 planar, all of which are referred
to as "domes") with solid-state detectors located underneath them.
Dome 1 was specially configured as a planar Al shield 4.3 mils
thick to allow accurate dosimetry measurements of the particles (5-
10 Mev protons) most likely to cause solar cell degradation. This
was necessary to meet PASP Plus requirements. The two thinnest
domes have two detectors under each dome, one with a large
sensitive volume and one with a small volume. The purpose of this
arrangement is to ensure a large dynamic range of the instrument;
the small detector will work reliably even with very high flux
levels that may saturate the larger detector. A summary of the
detector characteristics is given in Table 1. A cross sectional
view of D1, the planar and thinnest dome, is shown in Figure 3. A
cross sectional wview of D3, which is typical of the three
hemispherical domes except that there are two solid-state detectors
under D2, is shown in Figure 4.

Protons and electrons that penetrate the degraders will
deposit, on the average, different amounts of energy in the solid-
state detectors, so their contributions to the total dose can be
separated. The solid-state detectors are approximately 400 um
thick and most penetrating electrons deposit less than 1 MeV of
energy in them, while most penetrating protons deposit between 1
and 10 MeV. A summary of the dome moderators utilized, with the
resultant threshold energies, is given in Table 2. Energy
deposition curves for the four domes are shown in Figures 5-8. The
electron flux measurements with the thicker domes may not be
reliable due to the production of bremsstrahlung by low-energy,
non-penetrating electrons. The total electron radiation dose will,
however, still be correctly determined. The flexibility of this
design approach is that the same physical envelope of the dome-
detector assembly can be used for very different degrader
thicknesses and detector configurations. Thus, a simple mechanical
change can be used to tailor the proton and electron thresholds to
the specific mission requirements.




Isometric View of Dosimeter

Figure 1.
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Dose at

Flux at Overflow

Detec Overflo .
¢ tor (Q;ds S;; (particles/cm?-s)
Dome
Data Area Geometric
Channel Factor LOLET | HILET | TOTAL | LOLET HILET
(cm?)
Designation (cm*-sr)
D1 D1A 0.008 0.03 10° 107 10° 108 108
D1 D1B 0.051 0.16 10° 10° 108 107 107
D2 D2A 0.008 0.08 10¢ 107 10° 108 108
D2 D2B 0.051 0.35 10% 10¢ 108 107 107
D3 D3 0.051 0.35 10° 10°¢ 10% 107 107
D4 D4 1.000 4.4 10* 10° 107 10° 10¢

Electron Proton VHILET
Aluminum Shields threshold energy range threshold
Dome Detectors (g/cm?) Shape (MeV) (LOLET) (MeV) (HILET) (MeV)
D1 D1a, DI1B 0.0294 flat 0.15 5 - 80 40, 40
D2 D2A, D2B 0.55 hemisphere 1.0 20 - 115 40, 40
D3 D3 1.55 hemisphere 2.5 32 - 120 40
D4 D4 3.05 hemisphere 5.0 52 - 125 75




UOTIDOS SSOID T dwWod "€ 2aInbtg

H3dT10H HO10313d ONISNOH

s
/ / \\
S/ 4
// > ww\mwx. HOLO313a H3d €
AN (9) SLOVLNOO HOLD313d

\ i AN
) i ///
\N / //,
\ N
| N
J1vd1Sgns — —

SHO10313a

S$304NOS NOILVYHAITYD LHOIM4 NI
1104

=

N
o

QT3IHS N3LSONNL

I
S

N
/

N

O\
NS
o
y

H3OvdS "3ad10H 30HNOS HOLVINSNI LOV.LNOD




30HNOS NOILYHEITYO LHOIT4 NI

UOT3D8S §SO0ID € awoqg ' =2InbTg
H3ATOH HO103133a
N /
//v// \\\\
31vH1SENs N —
/// \ . \ \\\
/ k\/ ST 7 \\ yd - . 4 y
//\\\ \\ \ N v LS ~ - e
N / /
\ v N\, \\ A / 4 \\
Vit t72mN hvas
\ \\ AN S
\\\\ \\; I8 / /,,/
S 7 \
/ A .
- \ V4 2| ,/,,
/ \
/,\ \\\ N \\ /
/\\\ “\ J - b )
NS /V!‘_ < T
RO N
S|
K\ \ /AA\\%\\ T P .
PR p % ~ \\ A AN
HOL0313Q \\ Ve <
/ N
/ \\\ . ,,,//,,

HO1vd3aow

"3d70H 30HNOS

(€) SLOVLINOD HOLD313a

QT13IHS N3LSONNL

HOLVINSNI LOVLINOD



seaan) uotjitsodeqg Abasug T swog g =2aInbtg

(AeN) AbBusuz ejoljipd

0001 001 Ol L "0
L1t 111 ] | NI I I O A I T O T | | O O T T LO'O
n /F
- sSUOJ OQ_M —
= = L0
— — [ L
_ SU010Jd /// i
- e}

ooueploul 09 -----
90USPIDUIl [DUION

1

| awo(

[ | I W | ] et 1 1 | I ]

Hrrr i

LT ET T

00l

(AeN) peilsodeq Abusud



000 |

seain) uoTitsodsg Abisuy z swoq

001l

] [N | | a0 1 g 1

"9 sanbTg

(AeN) AbBusuz ejoibg
0l |

TENN N

00

RN

SUOTO g

SUOIIOa[]

[TTTT

IR R

Hrintl

tErT T

!

LR

oouLeploUl 09 -----

o0ouUSpP|oUl |DUION

Z owo(

rrriT

OO

L°0

Ol

001

(Ae) peyisodeq Abusuj

10



(AeN) ABusul o|011dDd
Ol

ssaIn) uotrirsodsqg Abisuxm ¢ swog /. oaInbTA
|
|
,
|

0001 00 1
I O I N | IR B ] I I N T 1 XOMO)
[
. SUOTOTg SUOTIOS[S m M
=1 = L0 %
W =
- - <
f - - S
= = o
m : "l @
W W
B B D
| - - <
, = — D
7 Ol =
m sousploul 09 ----- n
i S0USPIDUl |DUIION a

- ¢ auwo( =

= IR R T ] VI T T N I | T T O O ! HOO_\




seaan) uoTjtsodeq Abisum § swog ‘8 2INHTH

(AeN) Abusuz e|oljdpd
0l

0001 001! |

T O I | 1 ] | O I i I | I T O T 1 | LO'0O

= suolodd suoJ}oe|3g -

= — L0
1

— I _
1

I ~ _

= _ / =

B / =

- / b

- — ™

- _ -

£ _m =01

i SoUsploUl 09 ----- i

B @OC@U_OC_ _OC\_LOZ B

- ¥ ewoq -

=N N E I | I O OO O ] I T Y O 1 HOO_\

12

(AeW) peyisodeq Abusug



2.2 Electronics
2.2.1 Charge Sensitive Pre-Amplifier and Analog Signal Processor

A block diagram of the Charge Sensitive Pre-Amplifier (Cspa)
and Analog Signal Processor (ASP) circuitry is shown in Figure 9.
A signal-processing timing diagram is shown in Figure 10. The SSD
generates a charge signal proportional to the energy deposited in
its sensitive volume by an incident particle. The CSPA collects
the charge pulse and converts it to an amplified unipolar voltage
pulse, which is further amplified and converted to a bipolar pulse
by the shaping amplifiers. Particles that deposit more than 50 keV
in the SSD trigger the 50 keV level discriminator, which increments
a 24-bit event counter (TOTAL COUNT) and enables the zero-cross
discriminator. The zero-cross discriminator fires on the
subsequent bipolar signal zero crossing, strobing the flash 8-bit
analog to digital converter (ADC) such that the delayed bipolar
signal is sampled at its peak amplitude. The ADC data (DOSE) is
latched, and a data processor interrupt signal is generated. The
data processor subsequently reads the ADC data and resets the data
latch and timing circuitry — enabling the ASP to process the next
event. Note that the ADC normally "freeruns" at 20 kHz in order to
reduce power consumption. Particles which deposit more than 40
MeV (75 Mev for D4) in the S8SD trigger the 40 MeV level
discriminator, which increments an 8-bit counter (VHILET COUNT) .
The data processor reads and resets the 24-bit TOTAL COUNT and
8-bit VHILET COUNT counters every 6 seconds. There are six (6)
identical CSPA/ASP’s, one for each Solid-State Detector (SSD). The
six (6) CSPA’'s are contained on a single printed circuit board,
while there are six (6) identical ASP printed circuit boards. A
temperature monitor on the CSPA printed circuit board is
subcommutated in the telemetered data.

2.2.2 Data Processor

A block diagram of the data processing circuitry is shown in
Figure 11. The data processor is built around United Technology’s
1750A microprocessor. The 1750A is available radiaticn-hardened,
and is single-event-upset immune. It is a CMOS, 16-bit, Harvard
Architecture (separate program and data memory), Reduced
Instruction Set Computer (RISC), which can run at speeds of up to
12 MHz. It contains a Universal Asynchronous Receiver/Transmitter
(UART) and two 16-bit timers.

13
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A 24 MHz crystal-controlled oscillator is divided by 2 to
provide a 12 MHz clock (uP CLOCK) to the microprocessor. There are
8K (8192 16-bit words) of program rad-hard bipolar programmable
" read only memory (PROGRAM PROM) and 8K (8192 16-bit words) of
program low-power CMOS read/write memory (PROGRAM RAM). Program
execution may be from either PROGRAM PROM or PROGRAM RAM, as
selected by ground command. In normal operation PROGRAM PROM is
loaded into PROGRAM RAM, and PROGRAM PROM is powered off to reduce
power consumption (program execution is out of PROGRAM RAM) .
Program changes may be uplinked by ground command. There are also
8K (8192 16-bit words) of data read/write memory (DATA RAM).
PROGRAM RAM and DATA RAM are single-event-upset immune. Error
Detection and Correction (EDAC) corrects all single bit DATA RAM
errors. Uncorrectable multi-bit DATA RAM errors are reported in
the telemetered data. The EDAC is enabled/disabled by ground
command.

ASP data collection and control are provided via the system
data/address bus. The UART provides the spacecraft command/data
communications 1link, via an EIA RS-422 balanced electrical
interface. Twenty-one (21) critical analog monitors are digitized
and incorporated in the telemetered data. A watchdog circuit
provides positive indication of proper program execution.

2.2.3 DC-to-DC Converter

A block diagram of the DC-to-DC Converter is shown in Figure
12. The input bus filter attenuates bus transients and ripple.
The high efficiency (~89%) switching regulator generates five (5)
output voltages (+12 +8, +6, +5 and -6 volts). Feedback from the
+5V output provides line and load regulation for that output, and
line regulation for the remaining outputs. Post regulators
generate two (2) well regulated output voltages (+8VREF and
+5VREF) . A Cockroft-Walton voltage multiplier generates an
unregulated +300V which 1is applied to six (6) high-voltage
regulators, which provide regulated bias voltages for the solid-
state detectors. Analog monitors for all output voltages (13
total) are subcommutated in the telemetered data. Secondary return
(signal ground) is isolated from primary return (+28V .return) .
Input current is limited to 150% of the worst case nominal input
current. TwoO (2) temperature monitors are provided, one
unconditioned (passive), the other conditioned (active) . The
passive temperature monitor is read directly by the spacecraft,
allowing the Dosimeter’s temperature to be determined whether the
Dosimeter power is on or off. The active temperature monitor is
subcommutated in the telemetered data.
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2.3 Software

The software flowcharts are shown in Figures 13 through 15.
The power-up sequence and the program executive (the main
microprocessor loop) are shown in Figure 13. Following the power-
up sequence, telemetry output and various housekeeping tasks are
handled in the main loop, which runs in the background. Each of
the six ASP’s, as well as the serial command/data interface, are
handled via fast polling loops and interrupt latches.

The ASP polling and processing flow charts are shown in Figure
14. 1If a detector is struck by an incident particle that deposits
more than 50 keV in the detector, an interrupt flag is latched.
The resulting dose is read by the microprocessor and various
counters are incremented appropriately. Eight (8) data entities,
as shown in Table 3, are generated for each detector.

The serial-input processing flow chart is shown in Figure 15.
An interrupt flag is latched whenever a command is received from
the spacecraft. Of the several commands that have been defined, as
shown in Table 4, only the first two (the telemetry packet request
commands) are detailed in Figure 15. Under normal conditions,
telemetry packet request commands are to be received from the
spacecraft at a fixed rate of once per second. Housekeeping
telemetry packets, as defined in Table 5, are used primarily to
verify proper instrument operation at turn-on. Once proper
Dosimeter operation is established, normal data packets, as defined
in Tables 6 and 7, are used to transfer all primary science data
(PSD) and some housekeeping data to the spacecraft. Note that the
PSD is time multiplexed. The PSD for one detector is transferred
to the spacecraft in each normal data packet. Thus, six (6) data
packets (6 seconds) are required to read all of the PSD, and each
detector’s PSD is accumulated for six (6) seconds. The normal
telemetry packet data accumulation and transfer timing is shown in
Figure 16.
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Figure 13. Power Up and Program Executive Software Flow Chart
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Figure 15.

Serial Command/Data Software Flow Chart
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Entity

Mnemonic

Processed 50 keV to 1 MeV Event Count

LOLET COUNT

Processed 1 MeV to 3 Mev Event Count

HILETA COUNT

Processed 3 Mev to 10 MeV Event Count

HILETB COUNT

Processed Digital to Analog Converter
Overflow Event Count (= 10 MeV)

OVERFLOW COUNT

Very High Energy Deposition Event Count
(= 40 MeV for D1A, D1B, D2A, D2B and D3)
(= 75 MeV for D4)

VHILET COUNT

Total Event Count (=50 keV)

TOTAL COUNT

50 keV to 1 MeV Dose

LOLET DOSE

1 MeV to 10 MeV Dose

HILET DOSE
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Dosimeter Commands

Second Byte First Byte
MSB LSB MSB LSB Action/Response/Comments

8 7654321 87654321

0000O0O0O0CO 0000O0CO0OCDO Return normal telemetry packet

Note - This command must be sent at
1 second + 0.01 second intervals
for normal Dosimeter operation

00100000 000D0O00CO0CO Return housekeeping telemetry packet

01000000 000O0O0O0OCDO Reset dose counters

010000011 0000O0O0CO0O Enable data memory EDAC

01000100 00000O0O0O Disable data memory EDAC

01000101 00000000 Reset fault flags

01000110 0000O0O0O0CO Test watchdog

01 1AAAARA AAAAAAARA Power down PROM and run out of RAM
(AA...A = 13 bit starting address)

1 00AAADAA AAAAAAAA Power up PROM and run out of PROM
(AA...A = 13 bit starting address)

i101cCccccc cCccCcCCCCC | Upload block of data to Dosimeter RAM
11 0AAAAARA AAAAAADRNA (CC...C = 13 bit data byte count)
11 00000 DDDDDDDD (AA...A = 13 bit starting address)

(DD...D = 8 bit data byte)

11100000 DDDDDDDD | Program data must be sent in byte pairs
with the least significant byte sent
first, followed by the most significant
byte

Bit 8 is the Most Significant Bit (MSB)
Bit 1 is the Least Significant Bit (LSB)
LSB (Bit 1) is the first bit shifted out
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Byte No. Bits Contents
1 0-7 Frame ID, MSB (Bit 7) = 1 identifies
housekeeping packet
2 0-7 D1A Detector Bias Voltage Monitor
3 0-7 D1B Detector Bias Voltage Monitor
4 0-7 D2A Detector Bias Voltage Monitor
S 0-7 D2B Detector Bias Voltage Monitor
6 0-7 D3 Detector Bias Voltage Monitor
7 0-7 D4 Detector Bias Voltage Monitor
8 0-7 D1A Reference Voltage Monitor
9 0-7 D1B Reference Voltage Monitor
10 0-7 D2A Reference Voltage Monitor
11 0-7 D2B Reference Voltage Monitor
12 0-7 D3 Reference Voltage Monitor
13 0-7 D4 Reference Voltage Monitor
14 0-7 +12V Monitor
15 0o-7 +8V Monitor
16 0-7 +6V Monitor
17 0-7 +5V Monitor
18 0-7 +5V Reference Monitor
19 0-7 -6V Monitor
20 0-7 Regulated +8V Monitor
21 0-7 Detector Temperature Monitor
22 0-7 Electronics Temperature Monitor
23 0-3 Watchdog Count
23 4-7 Program Memory Fault Count
- 24 0-3 Data Memory Single Bit Fault Count
24 4-7 Data Memory Multiple Bit Fault Count
- LSB (Bit 0) is the first bit shifted out
Byte 1 is the first byte shifted out
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Byte No Bits Contents

25 0 Data EDAC Memory Enable Flag (Active Lo)
(0 = EDAC Memory Enabled, 1 = EDAC Memory
Disabled)

25 1 Data EDAC Enable Flag
(0 = EDAC Disabled, 1 = EDAC Enabled)

25 2 Program Memory ID
(0=PROM, 1=RAM)

25 3 Spare

25 4 PROM Power On Flag

25 5-7 Spare

26 0-7 Last Command Most Significant Byte (Data Byte)

27 0~-7 Last Command Least Significant Byte (Command
Byte)

28 0 Program RAM Fault Flag

28 1 Serial Input Fault

28 2 Data Memory Single Bit Fault Flag

28 3 Data Memory Multiple Bit Fault Flag

28 4 Program Anomaly Fault

28 5 Data Memory EDAC Fault Flag

28 6 Watchdog Test Fault Flag

28 7 Watchdog Bite Flag

29 0-7 First Program Memory Error Least Significant
Address Bits

30 0-4 First Program Memory Error Most Significant
Address Bits

30 5-7 Number of Program Memory Errors Detected

31 0-7 First Data Memory Error Least Significant
Address Bits

32 0-4 First Data Memory Error Most Significant Address
Bits

32 5-7 Number of Data Memory Errors Detected

33 0-7 Telemetry Packet Checksum, Most Significant Byte

34 0-7 Telemetry Packet Checksum, Least Significant
Byte

LSB (Bit 0) is the first bit shifted out

Byte 1 is the first byte shifted out
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Byte No. Contents Description
1 FRAME ID MSB (Bit 7) = 0 identifies NORMAL telemetry
packet
Primary Science Data (PSD) Channel Identifier
(= 0, 6, 12, 18 for D1A PSD data readout)
(=1, 7, 13, 19 for D1B PSD data readout)
(= 2, 8, 14, 20 for D2A PSD data readout)
(=3, 9, 15, 21 for D2B PSD data readout)
(= 4, 10, 16, 22 for D3 PSD data readout)
(= 5, 11, 17, 23 for D4 PSD data readout)
Also, Housekeeping Subcommutator Frame
Identifier (see Table 7)
2 VHILET COUNT PSD Very High Energy Deposition Event Count
3-5° TOTAL COUNT PSD Total Event Count (= 50 keV)
6-8" LOLET COUNT PSD Processed 50 keV to 1 MeV Event Count
9-11" HILETA COUNT PSD Processed 1 MeV to 3 Mev Event Count
12-14" HILETB COUNT PSD Processed 3 MeV to 10 MeV Event Count
15-19° LOLET DOSE PSD 50 keV to 1 MeV Dose
20-24" HILET DOSE PSD 1 MeV to 10 MeV Dose
25-26" OVERFLOW COUNT PSD A to D Converter Overflow Count (z 10 MeV)
27 COMMAND MSB Last Command MSB (Data Byte)
28 COMMAND LSB Last Command LSB (Command Byte)
29 FAULT FLAGS Bit 0 = Program RAM Fault Flag
Bit 1 = Serial Input Fault Flag
Bit 2 = Data Memory Single Bit Fault Flag
Bit 3 = Data Memory Multiple Bit Fault Flag
Bit 4 = Program Anomaly Flag
Bit 5 = Data Memory EDAC Fault Flag
Bit 6 = Watchdog Test Fault Flag
Bit 7 = Watchdog Bite Flag
30 PRG CKSUM MSB Program Checksum, Most Significant Byte
31 PRG CKSUM LSB Program Checksum, Least Significant Byte
32 HOUSEKEEPING Subcommutated Housekeeping Data (see Table 7)
33 TM CKSUM MSB Telemetry Packet Checksum, Most Significant Byte
34 TM CKSUM LSB Telemetry Packet Checksum, Least Significant

Byte

* First byte shifted out

LSB (Bit 0) is the first bit shifted out
Byte 1 is the first byte shifted out

(low numbered byte) is the least significant byte
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Frame ID Bits Housekeeping Data

(Byte 1 of Normal Telemetry Packet) (Byte 32 of Normal Telemetry Packet)

0 0-7 D1A Detector Bias Voltage Monitor

1 0-7 D1B Detector Bias Voltage Monitor

2 0-7 D2A Detector Bias Voltage Monitor

3 0-7 D2B Detector Bias Voltage Monitor

4 0-7 D3 Detector Bias Voltage Monitor

5 0-7 D4 Detector Bias Voltage Monitor

6 0-7 D1A Reference Voltage Monitor

7 0-7 D1B Reference Voltage Monitor

8 0-7 D2A Reference Voltage Monitor

9 0-7 D2B Reference Voltage Monitor

10 0-~7 D3 Reference Voltage Monitor

11 0-7 D4 Reference Voltage Monitor

12 0-7 +12V Monitor

13 0-7 +8V Monitor

14 0-7 +6V Monitor

15 0-7 +5V Monitor

16 0-7 +5V Reference Monitor

17 0-7 -6V Monitor

18 0-7 Regulated +8V Monitor

19 0-7 Detector Temperature Monitor

20 0-7 Electronics Temperature Monitor

21 0-3 Watchdog Count

21 4-7 Program Memory Fault Count

22 0-3 Data Memory Single Bit Fault Count

22 4-7 Data Memory Multiple Bit Fault Count

23 0 Data EDAC Memory Enable Flag (Active Lo)

23 1 Data EDAC Enable Flag

23 2 Program Memory ID, 0=PROM, 1=RAM

23 3 Spare

23 4 PROM Power On Flag

23 5 Spare

23 6 Spare

23 7 Spare

LSB

(Bit 0)

is the first

bit shifted out
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2.4 Mechanical

An isometric drawing of the Dosimeter, with the top cover
removed, is shown in Figure 17. The Dosimeter’s Interface Control
Drawing (ICD) is shown in Figure 18.

The six (6) CSPA’s are on a single printed circuit board (PCR)
which is located directly behind the SSD’s. The six (6) ASP’s (one
PCB each), Data Processor (1 PCB) and DC-to-DC Converter (2 PCRB’Ss)
plug into a motherboard, which provides the interboard connections.
The ASP’'s are isolated from the Data Processor and DC-to-DC
Converter by electrostatic shields which plug into the motherboard.

3. TEST AND CALIBRATION

Dosimeter testing and calibration was divided into four
distinct phases, as follows:

a) Breadboard testing during the design process.

b) Initial integration and functional testing of the flight
instruments.

c) Accelerator calibration of one of the flight instruments.

d) Qualification or acceptance testing of the flight
instruments.

3.1 Breadboard Tests

Extensive CSPA/ASP breadboard tests at room ambient
temperature and over the temperature range of -55°C to +100°C were
completed. The CSPA/ASP operates properly over this extended
temperature range, and its stability over the anticipated Dosimeter
operating temperature range (-25°C to +35°C) is well within that
required for accurate dose measurements. Since 12 ASP boards are
required (total for 2 Dosimeters), a single "engineering model" PCB
was fabricated and tested thoroughly. Some minor modifications
were incorporated into the PCB layout following completion of the
"engineering model" PCB tests.

Rather than fabricating and testing a "conventional"
breadboard of the data processing circuitry, an initial PCB layout
was completed, and a "breadboard" PCB was fabricated. Testing of
the "breadboard" PCB was completed, and the PCB layout was modified
as required.
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Isometric View of Dosimeter with Top Cover Removed

Figure 17.
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Extensive breadboard tests of the DC-to-DC Converter at room
ambient temperature, and over the temperature range of -55°C to
+125°C, were completed. The DC-to-DC Converter operates properly
over this extended temperature range.

3.2 Integration and Functional Testing

Integration and functional testing begins with testing of the
SSD’s and PCB’s. Many set-at-test parts which determine such
parameters as gain, reference voltage levels, threshold firing
levels, and logic timing, are initially adjusted at the PCB level.
All circuit functions of each PCB are also fully exercised,
including worst case interface conditions.

Final calibration, utilizing radioactive sources and
electronic pulsers, is carried out following assembly and
functional testing of the Dosimeter. Final amplifier gains and
threshold firing levels are set at this time. Accelerator

calibration of the Dosimeter is discussed in the following section.

This test phase concludes with an ambient pressure thermal
test over the qualification temperature range, with Limited
Performance Tests (LPT’ s) being carried out at several
temperatures.

3.3 Accelerator Calibration

The DMSP and CRESS Dosimeters (References 1 and 2) were
extensively calibrated with electrons and protons. These
calibrations are applicable to this dosimeter’s D2A, D2B, D3 and D4
channels. The Protoflight Dosimeter was calibrated at the MIT Van
de Graaff accelerator with electrons from about 0.2 MeV to 3.1 MeV.
The D1A, D1B, D2A, D2B and D3 channels were calibrated. Since
protons do not scatter significantly the proton flux responses are
close to the theoretical responses; therefore, accelerator
calibration with protons is not required.

The LOLET flux channel angular responses for electrons are
broad, being nearly uniform over the forward 2w sr. The calibrated
electron responses of the LOLET channels can be fit by the
following functions:
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A (E,0) = A (E,0° [(2 + 3 cosf)/5]

A (E,0° =0 if E/T, < 1
=1.5A° (1 - T,/E) if 1 = E/T, < 3
= AP° if E/T, = 3

GF, (E) =0 if E/T, < 1
= 7.38 A° (1 - T /E) if 1 « E/T, = 3
= 4.92 AP if E/T, = 3

where A° is the calibrated SSD area at 0° and high energy, and T,
is the threshold energy determined by the range thickness of the
shield.

The Backup Dosimeter Dose calibration factors are shown in
Table 8. These factors are based on the SSD area, the measured SSD
thickness, and the «calibrated digitization level energies.
Calibration factors convert the output dose counts into rads (S1i)
(= 100 erg/g(Si)). Also given are calibration constants to convert
the output dose counts into Gy(Si) (= 1 J/kg(s8i)) . Total
accumulated dose is given by:

D(SSD) = (TM dose count (SSD)) X K(SSD)
where:

K(ssp) = (6.876 X 107 rad/(TM dose count)) X (Prescale) X (keV/digitizer count))
A(SSD, cm?®) X thickness(SSD, microns)

with (Prescale) = 1 for the LOLET dose counts and = 8 for the HILET
dose counts.

As shown in Figures 3 and 4, a weak, degraded alpha particle
source (Am-241) is located behind each solid state detector. These
in-flight calibration sources are expected to be observable only
near perigee. LOLET flux count rates due to the in-flight
calibration sources may be masked by residual low energy ambient
particles; however, HILETA and HILETB flux count rates will verify
total solid state detector depletion and correct Analog Signal
Processor gain. LOLET and HILET dose count rates will be used to
verify overall Dosimeter operation. Note that in-flight
calibration source count rates must be subtracted from the in-orbit
data to provide the true ambient fluxes and doses. This is not
expected to be significant except for the HILET data near perigee.
In-flight calibration source count rates for the Backup Dosimeter
are shown in Table 9.
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3.3 Qualification and Acceptance Tests

The Protoflight Dosimeter underwent qualification testing,
which consisted of the following:

Baseline Comprehensive Performance Test
Electromagnetic Compatibility (EMC) Tests

Post EMC Comprehensive Performance Test

3-Axis Random Vibration

Post Random Vibration Comprehensive Performance Test
Thermal Vacuum Test

g) Final Comprehensive Performance Test

The Electromagnetic Compatibility Tests, Random Vibration Test
Levels, and Thermal Vacuum Test Profile are defined in Table 10,
Table 11, and Figure 19, respectively. All tests were completed
successfully.

The Backup Dosimeter underwent acceptance testing. The
acceptance test sequence was identical to the qualification test
sequence except that Electromagnetic Compatibility Tests (item b)
and the Post EMC Comprehensive Performance Test (item ¢) were not
done. All tests were completed successfully.

4. ON ORBIT PERFORMANCE

The Protoflight Dosimeter was delivered to Orbital Sciences
Corporation on 6/7/92 for integration into the payload of the
Advanced Photovoltaic Electronic Experiment (APEX) satellite, as
part of the Photovoltaic Array Space Power Plus Diagnostics (PASP
Plus) experiment. Subsequently, various minor hardware and
software problems were discovered and corrected while testing the
Backup Dosimeter. Following discussions with the contract monitor,
it was agreed that the Backup Dosimeter should be flown on APEX,
rather than the Protoflight Dosimeter. Accordingly, the Backup
Dosimeter was delivered to Orbital Sciences Corporation (0SC) on
9/28/93 for integration into the payload of the APEX satellite.
The Protoflight Dosimeter was returned to Panametrics at that time,
and the various minor hardware and software modifications which had
been incorporated in the Backup Dosimeter were subsequently
incorporated in the Protoflight Dosimeter.
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Test Test Method

Radiated Emissions, Magnetic Field, 0.03 to 50 kHz REO1
Radiated Emissions, Electric Field, 0.014 to 10,000 MHz REO2
Radiated Susceptibility, Magnetic Field, 0.03 to 50 kHz RS01
Radiated Susceptibility, Magnetic and Electric Fields, Spikes and Power RS02
Frequencies

Radiated Susceptibility, Electric Field, 0.014 to 10,000 MHZ RSO3
Conducted Emissions, Power and Interconnecting Leads, 0.03 to 15 kHZ CEO1
Conducted Emissions, Power and Interconnecting Leads, 0.015 to 50 MHZ CE02
Conducted Emissions, Power Leads, Spikes, Time Domain CEO07
Conducted Susceptibility, Power Leads, 0.03 to 50 kHz Ccso1l
Conducted Susceptibility, Power Leads, 0.05 to 400 MHz Cs02
Conducted Susceptibility, Spikes, Power Leads Cs06

Frequency Range

20 to 50 Hz

+6 dB/Octave

50 to 1000 Hz

0.025 g?/Hz

1000 to 2000 Hz

-6 dB/Octave

Composite Level

Duration = One Minute Per Axis

6.10 g RMS
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APEX was launched shortly after 1430 UT on 8/3/94, with the
initial orbits having apogee/perigee in the equatorial plane.
After a few orbits the spacecraft experienced some anomalies in the
- attitude control system, so the Dosimeter’s turn on was delayed.
The anomalous behavior eventually ceased, and the Dosimeter was
turned on in Rev. 20, at about 0410 UT on 8/5/94. The initial turn
on showed no anomalies, with the Dosimeter operating properly. The
Dosimeter was then monitored for several days to verify proper
operation.

Typical Dosimeter data are illustrated by the flux and dose
plots in Figures 20 through 23, which cover data from two complete
orbits beginning at 2321:25 UT on 8/7/94. Figure 20 shows the D1A
flux and dose data. The flux plot (bottom graph) shows the TOTAL
(upper curve) and LOLET (lower curve) counts, with the HILETA,
HILETB, OVERFLOW, and VHILET flux counts being comparatively small

- essentially on the x-axis for the entire plot. The dose plot
(top graph) shows the LOLET Dose (upper curve) and HILET Dose
(lower curve - essentially on the x-axis for the entire plot). The

D1A data show a response that is primarily from low energy
electrons (>0.15 MeV) in the inner belt. The D1A measured dose is
nearly all in the LOLET Dose. D1B shows essentially the same type
of response, but the approximately 5 times higher TOTAL flux counts
result in a greater dead-time effect.

The D2B flux and dose data are plotted in Figure 21. The flux
plot (bottom graph) shows the TOTAL (uppermost curve), LOLET
(second curve down), HILETA (third curve down), and HILETB (bottom
curve) counts, with the OVERFLOW and VHILET flux counts being
comparatively small - essentially on the x-axis for the entire
plot. The dose plot (top graph) shows the LOLET Dose (upper curve)
and HILET Dose (lower curve), with the HILET Dose being about half
of the LOLET Dose. The largest flux peak in each orbit arises from
the protons of the inner belt, as shown by the pattern of the
LOLET, HILETA and HILETB flux counts. The smaller peaks on each
side of the large inner belt proton peak arise from outer belt
electrons (>1 MeV), since the these peaks have the TOTAL and LOLET
fluxes nearly equal, with the HILETA and HILETB fluxes being
relatively small. The dose curves are in agreement with the flux
data, with the inner belt protons increasing both the LOLET and
HILET Doses, while the outer belt electrons increase primarily the
LOLET Dose. The D2A flux and dose data are similar to the D2B
data, except for having about 1/5 the counts.
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The D3 and D4 flux and dose data are plotted in Figures 22 and
23. The plots show the same characteristics as the D2B plots (the
order of the various flux and dose counts is the same), with a
large flux count peak from inner belt protons and smaller peaks
from outer belt electrons. Since the electron thresholds are 2.5
MeV for D3 and 5.0 MeV for D4, the outer belt electron peaks are
weaker for D3 and barely visible (in the graph) for D4. This shows
up clearly in the dose plots, where for D4 the only noticeable
increase is for the inner belt proton part of the orbit.

The above data, and other data from the first few weeks of
operation, show that the Dosimeter is working properly. The flux
count and dose accumulation patterns are what is expected for the
APEX satellite orbit. Data from near perigee show flux and dose
count rates essentially identical to the pre-launch values from the
in-flight calibration sources, so all detectors are operating in
total depletion and with the correct gain. For the first week of
operation the approximate average dose accumulation per orbit
(about 1.9 hours) is listed in Table 12 below. Note that the high
maximum count rate of the D1B channel (about 800 kHz) results in a
significant dead time correction to the accumulated dose counts
(the total count has about a 0.7 microsecond dead time for
counting; at 800 kHz this gives a dead time factor of 2.27), and
this is why the D1B doses are about 74% of the D1A doses. These
differences will be eliminated by making the necessary dead time
corrections during data processing.

. ”Z_iable i2,:,v5 e
 Average Dose - rads (Si) /orbit

Channel LOLET HILET TOTAL Ratio (B/A)
Dia 525 5.70 531
D1B 387 5.39 392 0.74
D2A 1.31 2.33 3.64
D2B 1.10 2.39 3.49 0.96
D3 0.58 1.37 1.95
D4 0.44 0.90 1.34
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The dose/orbit pattern in Table 12 shows that the thinnest
shielding (Dome 1 - D1A and D1B) results in most of the dose coming
from electrons (LOLET dose), while the thicker shields of the other
three domes result in most of the dose coming from protons (HILET
dose). As the APEX orbit precesses to put the apogee/perigee line
out of the equatorial plane, the flux/dose patterns seen in Figs.
20 to 23 should change, with more of the dose coming from the outer
belt electrons. The Dosimeter should thus provide a significant
amount of data on the dose rate distribution of the sampled parts
of the radiation belts.

5. SUMMARY

A second generation Dosimeter has been designed to fulfill the

need for accurate radiation dose measurements. Two identical
Dosimeters, a Protoflight unit and a Backup unit, have been
fabricated, tested and calibrated. The Backup Dosimeter was
integrated into the payload of the Advanced Photovoltaic and
Electronic Experiments (APEX) satellite, as part of the

Photovoltaic Array Space Power Plus Diagnostics (PASP Plus)
experiment.

APEX was launched shortly after 1430 UT on 8/3/94, with the
initial orbit having apogee/perigee in the equatorial plane. The
Dosimeter was turned on in Rev. 20, at about 0410 UT on 8/5/94.
The initial turn on showed no anomalies, with the Dosimeter
operating properly. The Dosimeter was then monitored for several
days and proper operation has been verified.

A summary of the second-generation Dosimeter’s characteristics
is given in Table 13.
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Characteristics

Sensors

6 planar silicon solid-state detectors (SSD’s) under 4
aluminum shields

Field of View

271 steradians

Data Fields

For each channel (SSD) counts in 6 deposited energy
ranges, and the dose for 2 deposited energy ranges.

LOLET counts (0.050 - 1 MeV)
HILETA counts (1 - 3 MeV)
HILETB counts (3 - 10 MeV)
OVERFLOW counts (> 10 MeV)
VHILET counts (> 40 or 75 MeV)
TOTAL counts (> 0.050 MeV)

LOLET dose (0.050 - 1 MeV)
HILET dose (1 - 10 MeV)

OQutput Data Format

272 bits serial, read out as 34 bytes, once per
second. A total of 6 readouts is required to obtain
all 6 channels. A total of 24 readouts is required to
sample all Housekeeping data.

Command Requirements

2-byte commands initiate telemetry packet
transmission, reset dose counters, determine PROM/RAM
configuration, and upload data to RAM.

Size 5.5" Hx 8" W x 9" D plus maximum 3.5" extension in D
for Domes, excluding connectors and mounting tabs.

Mass 13.0 1bs

Power 5.5 W Nominal, 8.5 W Maximum

Temperature Range

0°C to +35°C Nominal Operating
-10°C to +45°C Maximum Operating
-30°C to +60°C Non-Operating
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